A GAME THEORETICAL MODEL FOR MUSICAL INTERACTION

Grace Leslie

Navid Hassanpour

Center for Research in Computing and the Arts; Music Department
University of California, San Diego

ABSTRACT

In this paper we analyze musical interaction using a game
theoretical model and propose methods for generating mu-
sic based on predefined interactive frameworks. We em-
phasize particular games that exhibit behaviors that can
be exploited by musical means. In the case that a com-
puter is involved in this interaction, examples of strategies
are provided that can be implemented with finite state ma-
chines in order to model human decision-making behav-
ior. Example systems which pit a user-performer against
a computer in a game of strategy, and algorithmic agents
against each other, demonstrate the set of behaviors that
can emerge from the use of repeated games with learn-
ing methods such as reinforcement in interactive computer
music.

1. INTRODUCTION

A live musical performance is a delicate set of interac-
tions held between the composer, performers, and audi-
ence. Traditional Western music assumes a deterministic
control by the composer over all interaction levels, whereas
in relatively recent times, composers have developed sys-
tems that take the performer’s choices into consideration,
thereby placing them in a position of control. However,
within this field of open notation there is a wide range of
composer’s approaches to the interaction between play-
ers, as seen when we compare for example, Morton Feld-
man’s graphic scores with more deterministic interaction,
to John Zorn’s game piece Cobra, in which players decide
on their own mixture of cooperation and competition. In
the case of free improvisation, players often respond to
each other’s output based on their stored knowledge of
their partner’s playing habits.

In this paper, the above examples of interaction and
learning are modeled using game theoretical tools. These
models are then used to determine interactions between
players in a completely instrumental setting, in addition to
computer music applications that employ finite state ma-
chines to imitate different learning behaviors. The pro-
posed framework is intended to be a natural model for
musical interaction that can simulate musical learning and
improvisation. If we consider the idea that the origins of
our musical languages are derived from elementary musi-
cal interactions between players [1] it becomes apparent
that a computerized process modeling human interaction
with learning may be able to produce more natural musical

structures than other approaches to algorithmic composi-
tion which generate musical patterns based on graphical
or mathematical processes.

Iannis Xenakis adopted game theoretical concepts in
composing his pieces Duel and Stratégie [2], both for 2 or-
chestras, and Linaia-agon for brass trio [3]. He used two-
player zero-sum games to model a predetermined musical
interaction. This method was chosen to create a frame-
work that would somewhat model competitive behavior
[2]. However, the games he used were of a size that made
it impossible for the players to strategize. In the case of
Linaia-agon, musicians are known to have planned their
moves before the concert in order to convey more fluid
interactions [4]. His games are all zero-sum (which ex-
cludes the use of classic games such as Prisoners’ Dilemma)
and do not consider learning through repeated games, or
any formalized approach to strategy.

We propose a compositional framework that uses re-
peated musical games with small sizes so that players,
whether human or computer, can effectively strategize.
When simulated with computers, different methods of learn-
ing can be implemented efficiently that model human de-
cision making behaviors. When applied to instrumental
music composition, this framework can provide a nuanced
approach to cooperative and competitive behavior.

Section (2) will present examples of games that exhibit
different behaviors that can be mapped to musical interac-
tions, and repeated games that can be used for music com-
position. Section (3) will illustrate how various strategies
can be implemented by finite state machines in the case
of human-computer interaction. The final section will de-
tail the application of different learning strategies in the
case of the interaction between two algorithmic musical
agents.

2. MUSICAL INTERACTION THROUGH
REPEATED GAMES

In the following examples, we model human-human mu-
sical interaction with games involving strategy. For sim-
plicity the descriptions and examples are restricted to two
player cases, but the ideas are applicable to the games with
more than two players, and more than two actions for each
player. For now, each of the two players is involved in a
game with S strategies for each of the players.

Let us first consider the simplest musical example of a
repeated game structure. To demonstrate the abstraction
mechanism in the modeling of musical interaction, one



can map specific examples of musical interactions to the
outcomes of a game. The simplest way to demonstrate
this mapping is to use a binary representation where 1 and
0 represent a “win” and a “lose” respectively. It is clear
that there are four possible outcomes, whose audible effect
would be chosen by the composer in order to encourage or
discourage particular situations from being chosen by the
performers.

For example, let’s assume that two players are involved
in a game where the first player is playing either piano
or trombone and the second player is playing either flute
or trumpet. We can summarize the details of the game
in this simplified 2 x 2 game matrix shown in Table (1).
The first number in the pair a, b, is the first player’s (the
row player’s) payoff while the second number, b is the
second player’s (the column player’s) payoff. This game

Flute | Trumpet
Piano 1,1 0,1
Trombone | 1,0 0,0

Table 1. A musical game

is arranged so that the players are encouraged to play pi-
ano and flute, respectively. When the players choose their
quiet instruments, they each receive a payoff of one. When
they both choose their loud instruments, they receive no
payoff. However, a given player can also receive a pay-
off of one if he chooses to play his loud instrument when
his opponent decides to play her quiet instrument. After
several repetitions of this game, if learning is assumed,
we can predict that the players will approach an equilib-
rium in which they always cooperate in order to receive
the highest payoff. Thus the composer is able to control
the evolution of the players’ interactions without explic-
itly notating them. Interestingly, in [5] a similar musical
game was proposed for the analysis of fairness in moral
philosophy.

In the following example the two players are each given
a set of pitches from which they are allowed to choose
their next note. A new payoff matrix (see Table (2) below)
is arranged such that the first player receives the high-
est payoff when they play a note and the other player is
not playing or vice versa. The second player receives the
highest payoff when they play at the same time as the first
player or they both don’t play. A tempo is specified by
the composer, as is the direction that all notes are to be
played on the beat. The end of the game is specified by a
conductor or referee. The winner is chosen after a tally of
solo notes and duo notes is taken. This repeated series of

Note | Rest
Note | 0,1 1,0
Rest | 1,0 | 0,1

Table 2. Game matrix for the simplest human-human mu-
sical interaction example.

games invokes an unpredictable chain of mutual specula-
tions on both sides of the game. The role of the composer
is to compose appropriate music for each of the actions
so that her desired result is achieved. In this case, the
two players will be playing the same melody with various
phase offsets, and interrupted by silences.

A composer may decide to write a piece in which there
are clear patterns of cooperation and defection between
the two players, in which case a classic game called the
Prisoners’ Dilemma could be chosen, an example matrix
for which is shown in Table (3) below. This implemen-
tation will have one Nash Equilibrium at the 1,1 point,
meaning that any independent deviation from this point
by a player will result in a loss in his payoff.

3,310,5
50 1,1

)

Table 3. Prisoners’ Dilemma

Finally it is possible to think of a fully symmetrical
case such as the game in Table (4). This game has only
one mixed Nash equilibrium. In this specific example it
will be a mixture of 1,2 and 2, 1. We will use Prisoners’

1,210,0
0,0 | 2,1

Table 4. Battle of the Sexes

Dilemma in the next section to demonstrate the applica-
tion of finite state machines (FSMs) in the modeling of
musical interaction. The game described in Table (4) will
be used in section (4) to demonstrate the convergence be-
havior of learning strategies.

3. MUSICAL INTERACTION THROUGH FINITE
STATE MACHINES

The game theoretical framework described in the previ-
ous section can be applied to musical pieces and systems
involving interaction between human musicians and com-
puters. The composer can specify certain musical behav-
iors from the human performer by tweaking the interactive
system, rather that explicitly sending orders to the per-
former.

In this section we describe how this can be achieved
with the use of finite state machines whose behavior is
based on well-known game strategies.

3.1. Strategizing in Games by Finite State Machines

The computer playing a musical game with a human can
implement either a learning algorithm or a fixed strategy
based on a finite state machine. For example, a human
player is asked to play a simple musical game (such as
a Prisoners’ Dilemma shown in Table (3)) with a com-
puter, which is programmed to run a fixed strategy, such



as the one based on the FSM shown in Figure (1). For ex-
ample, the response of this strategy to a chain of actions
(C,C,D,D,C,D) from the human player will be the chain
(C,C,C,.D,D,C). In Figure (1) the computer player starts

C D

C
Figure 1. Tit for Tat

by being “Nice”. When it is in the “Nice” state it plays ac-
tion C (for cooperate), whereas if it is in the “Nasty” state
it plays D (for defect). The labels of transition arrows are
the acts of the opponent. For example in Figure (1) if the
opponent plays D, the first player will switch from being
“Nice” to being “Nasty.”

Two finite state machines can dictate the strategy on
both sides of the game. For example if the FSM in 1
plays Prisoners’ Dilemma against the FSM in Figure (2),

C C

Figure 2. Tat for Tit

D

Assuming (X, Y") means the first player plays X and the
second Y, the chain of plays will be

(C, D)(D, D)(D, C)(C. D)(D, D)(D,C)(C. D)...

ey
It will end up in a chain with a period of 3 and repetitions
of (D, D)(D,C)(C, D). There are 24 possible different
two state machines. In this case, we have used only two
examples of these FSMs. Further analysis of FSMs play-
ing repeated games can be found in social and political
science literature such as [6] and [7].

4. LEARNING IN REPEATED MUSICAL GAMES

As an alternative to fixing a strategy using a FSM, one can
implement learning in repeated games. In such scenarios,
players start by making each move with some probability
and gradually learn from each other’s plays. This setup
can be considered as an abstract model for learning in the
process of interactive musical play such as free improvi-
sation. The composer can now choose a game matrix and
strategy or learning method, i.e., reinforcement learning
or best reply [8], in order to coax particular behaviors from
the two performer-agents. We present a simplest exam-
ple below employing the “Battle of the Sexes” game that
demonstrates how different games and learning methods
produce different musical outputs.

We use 4 notes to represent the 4 acts in a 2 x 2 game.
ft, cf, ¢ and g. In the game of Table (5), g and cf are

g | ft
c |1,2]0,0
ct 0,0 2,1

Table 5. Example payoff matrix for the simplest
computer-computer interaction.

played “loud” while f# and c are played “soft”. There-
fore, in the cases of desirable outcomes of (¢, g), (ct, f1),
the payoffs are higher for louder pitches (2 compared to
1 for soft pitches). Later we will discuss the convergence
behavior of reinforcement learning in this game. Several
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Figure 3. Convergence of Probabilities for Reinforcement
Learning in the Game of Table (5)

learning mechanisms are possible. We will go through
a few of these strategies, from the simplest to the most
sophisticated. One of the simplest models of learning in
a multi-player game is imitation, whereby strategies that
are successful for one player are adopted by other players
involved in the game. This learning strategy recalls one of
the most fundamental properties of both improvised and
through composed music, both of which rely on imitation
to structure interaction between voices and musical ideas.

4.1. Reinforcement Learning

In this learning model players reinforce their acts based
on the payoffs they get from each play. Each player starts
with some initial probability of playing different acts and
after each round of play, both players update their prob-
abilities of playing the acts based on the payoffs they re-
ceived in the previous round.

More concretely, assume that players 1,..., K are in-
volved in a game with positive payoffs and S' strategies.
Each player k starts with initial probabilities py 1(0).. . .,
pr,s(0) of playing strategies 1,...,S. After each play,
the players participating in the game update their proba-
bilities of playing each of the S strategies. Assume that



each player & has an urn with A (n) balls for the act s
at time n. We restrict our analysis to two player games,
K = 2, for the ease of presentation, but results apply to
general K player games. Taking the payoff earned when
the acts s and j are played by player k, kK = 1,2, at time
n=1,...,Nasx},

Aps(n+1) = Ap s(n) + 57T§7j 2)

where ¢ is the reinforcement step size. Note that each urn,
k = 1,2, has an initial number of Ay, 5(0) s balls. At each
time n = 1,..., NV the probability of playing s at time n
for player k = 1,2 s

_ Ak_,s(n)
S0 Arr(n)

For example if the players end up playing (ct, i) in Ta-
ble (5), the row player will add 1 reinforcement unit § to
his urn for the act cff while the column player adds two
reinforcement units 26 to her urn for the act g.

We have implemented this learning mechanism using
the musical game in Table (5) and the convergence be-
havior for one learning instance is depicted in Figure (3).
This plot shows that the probabilities of playing cfj and
g go to zero asymptotically, i.e. players learn to play
(ct, ft) eventually. It turns out that for the game in Ta-
ble (5) (ct, f) is the outcome of reinforcement learning
half of the time, while in the remaining half (cf, gfj) is the
result of learning. Reinforcement learning results in con-
vergence of the probabilities to the unique mixed Nash
equilibrium of the game. Other games have different be-
havior; for example, reinforcement learning in Prisoners’
Dilemma makes probabilities converge to the Nash equi-
librium, the (1, 1) strategy, almost surely [9].

Py s(n) 3)

4.2. Best Reply

This is based on the history of the played games. Players
can choose the acts that yield the highest payoff based on
the games played in the m last plays.

In the above definition assume that each of K play-
ers, k, has a history of playing (s (1), s%(2), ..., sx(n))
up to time n. Each of the players decides about his act at
time n+ 1 based on the empirical frequencies of his oppo-
nents’ plays s_x(1),...,s_x(n). The expected utility of
each act against this distribution is calculated. The largest
expected payoff determines the act at n + 1.

For example, assume that in the prisoners’ dilemma in
Table (3), the second player has played (C,D,D,C,C) dur-
ing the first five plays. Assuming this history, by playing
C, the first player would get an expected payoff of 3 x 3/5
and with playing D, (3 X 5+ 2 x 1) /5. Therefore she will
play D. In general, we set

sp(n+1) = argmaxz vajik (1) 4

s i=1

The results of the implementation of this learning strategy
converge faster than when reinforcement learning is used.

Other learning mechanisms such as Bayesian learning
are applicable to musical games. In this case, the play-
ers assume that their opponents play based on a probabil-
ity distribution and update that distribution after each play
based on the acts played. Based on these updated expected
distributions, they choose acts that maximize the expected
payoffs.

Our list of learning methods is by no means exhaustive.
However, our aim is to suggest that musically meaningful
behaviors can be simulated using some of these methods.

5. CONCLUSION

This indeterminate approach opens up the musical pro-
cess to allow for performer participation, while still lend-
ing the overall stylization of the interaction between these
performers to the composer. Thus the music presents a
delicate balance between the uncertainty of the human’s
behavior, and a game situation which is designed to coax
particular behaviors out of the interaction between these
players. The framework we have suggested demonstrates
a variety of human emotions and projections in the format
of a stylized, repeated game. A wide variety of options
are available to the composer including exploration of dif-
ferent payoff matrices, finite state machines, and various
learning algorithms.
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